
3

Conventionally, we have used HILS (Hardware In the Loop Simulator) for better inspection quality of vehicle
control software in ECU (Electric Control Unit) before setting it up on an real vehicle. However, due to more
complicated vehicle control systems and the division of development work, it has become difficult to obtain the
ECU and build the HILS for the inspection.

There have been discussions on improving vehicle software inspection quality and/or efficiency, moving its
inspection in ECU to an earlier stage than its actual setting, and verifying the logic in the upper process by adopt-
ing the SILS (Software In the Loop Simulator) that uses a virtual ECU instead of real ECU. However, SILS simu-
lation speed is not fast enough and that has been an obstacle to practical use. [FUJITSU TEN TECHNICAL
JOURNAL No. 47 in Japanese (No. 27 in English) carries the related article.]

In this paper, we explain our developed SILS "Virtual CRAMAS," which can inspect the software almost as
accurately as the HILS does at faster speed. We developed it in the approach discussed here that simulates only
microcomputer's operations necessary for the vehicle control software operation and using ISS-less technology,
instead of adopting the ISS (Instruction Set Simulator) technology that faithfully simulates the microcomputer in
instruction unit and was used for SILS introduced in the above-mentioned technical journal.

Abstract

Yuu MORIYAMA
Takeshi FUKAZAWA
Masahiro MAEKAWA
Akira KITAMURA

Application of ISS-less technology to VirtualCRAMAS (SILS)

4

FUJITSU TEN TECH. J. No.32(2009)

FUJITSU TEN TECHNICHAL JOURNAL

1. Introduction

In recent years, as vehicle control systems become
more sophisticated and complicated, there are more
ECUs (Electric Control Unit) in vehicles and, furthermore,
multiple ECUs are integrated to control the vehicle sys-
tems. As for vehicle development, the trend of shorter
development period and development without creating a
prototype has accelerated. It leads to a serious challenge
of how to develop the growing number of software effec-
tively in a shorter time while ensuring quality of the soft-
ware. Under these circumstances, SILS (Software In the
Loop Simulator) is attracting the attention as a support
tool for ECU software development without using hard-
ware such as an actual ECU and HILS (Hardware In the
Loop Simulator).
This time we developed "VirtualCRAMAS," which

enables simulation at higher speed, in an approach that
simulates only those microcomputers behaviors necessary
for the vehicle control software behavior using ISS
(Instruction Set Simulator)-less technology, instead of
adopting the ISS method that faithfully simulates the
microcomputer in instruction unit.

2. Types and Use of SILS

This section describes various types of SILS and their
use.
Generally, in addition to HILS and SILS, the words

"MILS (Model In the Loop Simulator)" and "PILS
(Processor In the Loop Simulator)" are also used to refer
to simulators. However, definitions and use of those
words are different according to the literature and they
are not standardized. Therefore, "HISL" hereinafter is

defined as the simulator that uses hardware in the feed-
back loop and "SILS" as the one that only uses software
and does not use hardware.

2.1 Emulation and Simulation
There are many types of "SILS." We categorize SILS

herein according to "the simulation level (accuracy)" of the
ECU including the microcomputer.
First, we define the simulation level from the system

structure of an actual ECU shown in Fig. 1. As shown in
Fig. 1, in an ECU, software layered into OS (Operation
System), PF (Platform) software, app. (application) soft-
ware, etc. runs on the hardware including peripheral cir-
cuits. As mentioned earlier, SILS simulates the ECU only
using software. Therefore, the approach for the simula-
tion is not limited as long as the SILS fulfills the purpose
and meets the intended use. As a result, a variety of
SILS have been developed for a wide range of purposes.
In this paper, we use the word "simulation" many

times. Only in the context of ECU, it includes the mean-
ing of "emulation." "Emulation" means running a part of a
system on another system without any change. Among
the examples is running software for Windows on Linux
and running software of a game machine on a PC without
changing anything. The key point is "as it is" or "without
changing anything."
An ECU in SILS is implemented by emulating the

software layers above a certain layer and by simulating
the other below layers. When designing an ECU of SILS,
an engineer determines first which part of the ECU is
implemented "as it is" and "without any change." The
determination is closely connected to the purpose of the
SILS or the element of how and why the user uses the
ECU.

Actual
ECU

ECU（Electric Control Unit）

Peripheral
circuit

Peripheral
circuitBuilt-in microcomputer

Input
port

Latch
port

Capture

Output
port

PWM

Compare

CPU
core

Memory

driver

driver

driver

Target software
App. layer
PF layer
OS

Commu-
nications

Commu-
nications

Fig.1 Structure of Real ECU

Introduction1

Types and Use of SILS2

5

FUJITSU TEN TECH. J. No.32(2009)

Application of ISS-less technology to VirtualCRAMAS (SILS)

Obviously, the control software to be debugged by
the user and the software upper than it is implemented
"as it is" "without any changes." That means that it
needs to be emulated. In this case, software lower than
the control software (physical side, hardware side) can be
implemented (simulated) freely within the range where
the upper software is emulated.
Generally, the lower the software to be emulated

becomes, the more precise and the closer to the actual
equipment the simulation becomes (or the higher simula-
tion level becomes). However, that requires high level of
knowledge in software design and implementation and
increases man-hours. On the other hand, the upper the
software to be emulated becomes, the lower the simula-
tion level becomes. However, such software can be easily
designed and implemented.
The above-mentioned level is ultimately determined

according to the use and purpose of the user. Whenever
the simulation level is changed, the system becomes
incompatible or cannot be reused.
Therefore, FUJITSU TEN developed an original

method for realizing effective system development and
user support by dividing SILS into three types according
to simulation level and by using the same module struc-
ture and I/F for them. The following describes the three
simulation types in details.

2.2 Three Types of SILS
Fig. 2 shows the three types of SILS, their use and

characteristics that are defined by FUJITSU TEN. As
shown in Fig. 2, according to the simulation level and use,
those types are defined as
・Type 1 (through RAM value)
・Type 2 (ISS-less)
・Type 3 (ISS)
The Type 1 is the SILS that only covers "application

software." Since it emulates the software upper than the
RAM value area to which the application software refers,
its structure is the most simple among those three and its
operating speed is the fastest. We assume that it is used
for system development or application development in
ECU development.
The Type 2 is the one that covers "application soft-

ware and PF software." However, it requires changes in
a part of PF software. Since it emulates the software
upper than the register area to which the PF software
refers, it has more complicated structure and operates
slower than the Type 1. We assume that it is used for
application development in ECU development or develop-
ment / inspection of PF.
The Type 3 is the one that covers "application soft-

ware and PF software." Since it emulates the instruction
set of the microcomputer, all software including the actu-
al OS and PF software runs according to the object. As a
result, its structure is the most complicated and its work-
ing speed is the slowest among those three. We assume
that it is used for microcomputer development.

System development
ECU development

Microcomputer
developmentApplication

development
PF /
inspection

Type 2

Type 1

Type 3

App.

Plant
model

Cost

Accuracy
(abstraction level)

App.
Plant
model

ISS-less Platform

PF
HWM

App.

Plant
model

ISS platform

PF
OS
HWM

Case example：Combined with CoMET
（V-ECU）
Range：entire software (including PF)
Form：object (.x), source(.c, .h)
Abstraction level ： microcomputer 　　
 instruction set
Speed：real-time ratio 1/100 to 1/1000
※ISS: Instruction Set Simulator

Case example： ISS-less simulator
Range：entire software (including a
part of PF)
Form：source (.c, .h)
Abstraction level：through resister
Speed：real-time ratio 1/2 to 1/4

Case example：in-house simulator
Range：entire application
Form：source (.c, .h)
Abstraction level：through RAM
value
Speed：real-time speed

Use

Computing
load
Computing
load

Fig.2 Types and Use of Our SILS

6

FUJITSU TEN TECH. J. No.32(2009)

FUJITSU TEN TECHNICHAL JOURNAL

3. System Structure

3.1 Basic Structure of SILS
An appropriate SILS type is selected from the three

according to the use of the simulation and their use is not
limited by the type of intended control software.
Consequently, the most appropriate type should be select-
ed and two or more types should be used in combination
even in the development of one model according to its
development process and its purpose of debug. FUJITSU
TEN divided the SILS, as shown in Fig. 3, into two parts:
virtual ECU and virtual vehicle. That enabled us to real-
ize the method where only the type of the virtual ECU
can be changed easily according to the purpose.

As shown in Fig. 3, "the virtual ECU" and "the virtual
vehicle" constitute the SILS. The virtual ECU can be
switched from the Type 1 to the Type 3 and vice versa.
On the other hand, a common vehicle simulator is used
for the virtual vehicle part and is connected to the GUI
that is used to operate the simulation and displays mea-

sured values.
That structure allows a user to debug the software

continuously using the same vehicle model and test con-
tents by switching the virtual ECU part according to the
purpose. We made the GUI for setting and operation of
the simulation to be shared by the SILS and HILS. As a
result, the vehicle model and test contents for HILS can
be also used for the SILS. Moreover, in the case of simu-
lating the system in which multiple ECUs are integrated,
it can optimize the simulation by adjusting simulation
accuracy level for each ECU.
Our CRAMAS Division explained "the SILS Type 3"

in our TECHINICAL JOURNAL No. 47 in Japanese (No.
27 in English). Therefore, in this paper, we elaborate the
structure and internal algorithm of "the SILS Type 2."

3.2 Structure of SILS Type 2
Fig. 4 shows the detailed structure of the SILS Type

2. As shown in Fig. 4, the system consists of four main
segments: "ECU simulator segment," "simulation engine
segment," "external model executing segment" and "simu-
lation control / display segment."
The ECU simulator segment is composed of "the vir-

tual microcomputer core segment" with the control soft-
ware and IO driver and "the virtual microcomputer
resource segment" with the timer capture / compare
function. The simulation engine segment consists of the
event computing segment and the system clock.
The external model executing segment is constituted

by "the plant model" that simulates external mechanism
to be controlled, "the I/F board model" that simulates the
I/F board function and "the model control segment" that
controls those models.
The simulation control / display segment includes

"the simulation control segment" that controls the entire
simulation, "the data input segment" that inputs data to

Simulation engine segment

Virtual microcomputer segment

Model control
segment

Display segment of
measured data

Data input segment

Simulation
control segment

Plant model

Analysis segment of
measured data

Simulation control / display segment

Measured
data

ECU simulator segment

External model executing segment

Control softwareIO driver

Virtual microcomputer
source segment

System clock

Timer capture / compare

I/F board model

Event computing

Fig.4 Structure of SILS Type 2

ＣＲＡＭＡＳ ＤＬＬ Plant model
(vehicle model)

CRAMAS GUI
(same as CRAMAS for HILS)API

call

Device model
（equivalent to
I/O board)

Type 2 Virtual ECU

Standardized
and shared

Type 3
Virtual ECU

Type 1
Virtual ECU

Transposable

Communi-
cations

Fig.3 Basic Structure of SILS

System Structure3

7

FUJITSU TEN TECH. J. No.32(2009)

Application of ISS-less technology to VirtualCRAMAS (SILS)

the simulating environment, and "the measured data dis-
play segment" that displays the measured results from
the simulation. In addition, it has the "analysis segment of
measured data" that analyzes the accumulated measured
data in detail.

3.3 Application Example to Engine Control
System
Fig. 5 shows the virtual structure of the SILS Type 2

corresponding to the actual engine control system.

ECU（Electric Control Unit）

Peripheral
circuit

Peripheral
circuit

Output to the vehicleInput from the vehicle

Built-in microcomputer

Input
port

Latch
port

Capture

Output
port

PWM

Compare

CPU
Core

Memory

Digital input

・Starter SW

・Electric load SW

・Shift position SW

・Air conditioner SW

Analog input
・ Water temperature
 sensor
・ In-take air
 temperature

Digital output

・Check engine lamp

・Main relay

・Air conditioner relay

Pulse output

・ISC

Pulse output

・Ignition signal

・Injection signal

Analog output

・Shit control solenoid

・VVT solenoidTarget
software

Actual vehicle

driver

driver

driver

Simulation instrument realized by this invention

Virtual microcomputer core segment

Display segment of
measured data

Data input segment

Simulation control
segment

Analysis segment of
measured data

Measured
data

Control softwareIO driver

Model control
segmentPlant model

Virtual microcomputer
source segment

System clock

Timer capture / compare

I/F board model

ECU simulator segment

Engine control system to be simulated

This controls the
implementation of the
control software and
model control segment.

Event computing
segment

Simulation engine segment

External model executing segment Simulation control / display segment

This has the same IF as the
one under the simulation
with an actual EUC and
deliver IO info. to the virtual
microcomputer resource
segment.

Data equivalent
to physical
measurement
W/ time info.

Pulse signal

・ E/G RPM signal

・ Vehicle speed

 signal

Commu-
nications

Commu-
nications

Fig.5 Structure of SILS Type 2 Corresponding to Real Engine Control System

8

FUJITSU TEN TECH. J. No.32(2009)

FUJITSU TEN TECHNICHAL JOURNAL

As shown in Fig. 5, "the actual vehicle," "ECU" and
"input to and output from the vehicle" in the actual
engine control system correspond to the "the plant
model," "the ECU simulator segment" and "the I/F board
model" in the SILS Type 2.
In order to simulate the processing of the actual cir-

cuits on the microcomputer periphery, "the IO driver" is
built in "the ECU simulator." "The simulation engine seg-
ment" is created between "the ECU simulator segment"
and "the external model executing segment" to control
the execution by "the control software" and "the model
control segment." The SILS Type 2 can simulate faster
than the SILS Type 3 because its execution is controlled
by event processing, not by temporal synchronization
processing. In the next and later sections, we will explain
the method for the high-speed processing.

4. High-Speed Processing Method

4.1 IO Processing on Virtual Microcomputer
Periphery
The SILS Type 2 realizes the IO processing on the

virtual microcomputer periphery without hardware mod-
els such as a "CPU model" and "periphery circuit model"
for high-speed processing.

Fig. 6 shows the method of IO processing on the vir-
tual microcomputer periphery.
As shown in Fig. 6, "the virtual register" created

between the virtual microcomputer core segment and
virtual microcomputer source segment enables high-
speed data input / output processing and interrupt pro-
cessing needed to execute the target ECU control soft-
ware.
We modified and added codes to a part of the hard-

ware dependent layer and the microcomputer dependent
layer for access from the control software to the virtual
register for when data is input / output.
However, the modification and addition of those codes

little affects the behavior logic of the control software so
that it does not affect the behavior verification procedure
and results of the control software.
And since their modification and addition can be

defined automatically from the parameters or description
rule of the control software, they can be automatically
converted by the conversion tool.
Therefore, the SILS Type 2 can verify the behaviors

of the application layer, the hardware independent layer,
and the microcomputer dependent layer almost as accu-
rately as an actual ECU and it can simulate faster than
the SILS Type 3.

Virtual microcomputer core segment

Input info. acquisition en bloc

Interrupt controller

Acquisition of interrupt flags
Clearing interrupt flags
Start the handler according to interrupt flags

Interrupt (event trigger)

Interrupt handler

App. layer

★Input

★Output

Hardware dependent
layer

Setting output dement en bloc

Interrupt authorization to the virtual microcomputer
resource segment

Virtual register

Setting input info.

Acquisition of
interrupt flags

Clearing interrupt flags

Setting output

Setting input info.

Setting output

Authorization request

IO driver Control software processing

Order of
processes

Virtual
register

Microcom-
puter
dependent
layer

Virtual
micro-
computer
resource
segment

Fig.6 IO Processes on Virtual Microcomputer Periphery

High-Speed Processing Method4

9

FUJITSU TEN TECH. J. No.32(2009)

Application of ISS-less technology to VirtualCRAMAS (SILS)

4.2 Realization of Event-Driven High Speed
Computing
In addition to the higher speed of the IO processing

on the virtual microcomputer periphery using the virtual
register, the SILS Type 2 enables the faster processing in
the microcomputer by event-driving programming.
Fig. 7 shows the event-driven method for realizing the

higher speed.

The event driven procedures shown in Fig. 7 are as
follows.
①Take the topmost event out of the event list.
②Renew the simulation GTM (Global Timer) and free-

running timer to time Tnel.
③Set nBit (capture register length) at the lower level of

the free-running timer to the capture register.
④Set the applicable interrupt flag.
⑤Implement the calling equivalent to the interrupt of

the virtual microcomputer core segment.
⑥Deliver the process completion.

The event computing segment calculates the time
when the next interrupt occurs.

⑦Add the "Tne2" and "NE interrupt" to the end of the
event list as the reservation of the next interrupt.
The series of the procedures enables higher speed

operation than in the traditional routine computing
method.

4.3 Time Concept in SILS Type 2
Fig. 8 shows timer processing at the event-driven sim-

ulation.

As shown in Fig. 8, a timer (the upper in the fig. 8)
ticks time at constant speed in the normal simulation.
The only way to make the simulation faster was using a
high-speed computer or reducing loads on processing
other than on the target source.
On the other hand, in the case of event-driving pro-

gramming, the constantly ticking timer is not required
because events are processed in the order of occurrence.
This method can slash the processing time.
Fig. 9 shows the relationship between actual time and

virtual time of three simulation types.

In the case of the HILS (real-time simulator), the
progress of the virtual time equals to the one of the actu-
al time. As for the SILS Type 3, the progress speed of
the virtual time is different from the one of the actual
time. However, the difference is constant (in a straight
line).
Contrarily, in the case of the SILS Type 2, the actual

time does not progress (0 time) when the software
processes but since the virtual time progresses by event
processing, the time is skipped to a start time of process-
ing. As a result, the difference between the virtual and
actual time is not constant (non-linear).

T
im
er
 s
yn
ch
ro
ni
za
tio
n Free-running timer

Capture

Interrupt flag

Compare

Port

PWM

Interrupt
processing

Process
completion

③ ④ ⑤

I/F board model

:

O
R

⑥

①

②

Simulation engine segmentSimulation engine segment

Time Event

Tt1 1ms interrupt

Tne1 NE interrupt

Tne2 NE interrupt

Simulation
GTM

Event list

Event
computing
segment

⑦

②
Virtual microcomputer resource segmentVirtual microcomputer resource segmentVirtual microcomputer resource segment Virtual microcomputer Virtual microcomputer

core segmentcore segment
Virtual microcomputer
core segment

Fig.7 Method for Event-Driven High Speed Computing

Actual time

V
irt
ua
l t
im
e

V
irt
ua
l t
im
e

V
irt
ua
l t
im
e

・HILS (real-time simulator)

Actual time

SILS Type 3

Actual time

SILS Type 2

Fig.9 Relationship between Virtual Time and Real Time

IDL task

Time

1ms 1ms 1ms 1ms

・SILS Type 2 1ms 1ms1ms 1ms Reduction in processing time

The SILS Type 2 implements modules in order,
skipping the time when any event is not processed.

・HILS
・SILS Type 3

Igni-
tion

Igni-
tion

Vehicle
speed

Vehicle
speed

Fig.8 Event-Driven Process

5. Simulation Results of SILS Type 2

5.1 Input / Output Inspection of Virtual ECU
Connector
In order to verify the SILS Type 2 behavior, we

inspected the input / output ECU connector in the same
way as we do for an actual ECU. As mentioned in
Section 3, since VirtualCRAMAS can share the test con-
tents with HILS, we used the same inspection sheet used
for HILS. However, we did not inspect a part of signals
related to electric power and other signals that were not
modeled in the SILS.
Fig. 10 shows a part of the inspection results.

We examined the results in Fig. 10 in detail and found
that all the signals satisfied the inspection criteria of an
actual ECU. Most of the other signals also met them.
We also found that the SILS modeling method or time
concept was the reason why some signals failed to meet
the criteria and that the ECU control software behavior
did not have any problem.
In addition, Fig. 11 shows the inspection results of

when the same inspection was conducted on the SILS
and the HILS.
The inspection results shown in Fig. 11 indicate that

the SILS's signal waveform and timing needed to verify
software behavior coincide with the ones of the HILS.

As a result, we also found that the SILS Type 2 is
usable for the inspection of input / output of an EUC con-
nector.

5.2 Effects of High-Speed Processing Method
Table 1 shows the results of the benchmark compari-

son among our SILS Type 2 (VirtualCRAMAS using ISS-
less technology) and competitors' SILS.
As shown in Table 1, VirtualCRAMAS using ISS-less

technology, like the competitors' SILS Type 2, proved its
simulation speed can be faster than the one of the SILS
Type 3.

10

FUJITSU TEN TECH. J. No.32(2009)

FUJITSU TEN TECHNICHAL JOURNAL

ISS-less
VirtualCRAMAS

Type 2 (ISS-less)

FUJITSU TEN

ISS-less

100MIPS

Type

Manufacturer

ISS or ISS-less

Speed

Type 2 (ISS-less)

Company A

ISS-less

100MIPS

ISS-less SILS A

Type 3 (ISS)

Company B

ISS

1MIPS

ISS SILS B

Type 3 (ISS)

Company C

ISS

20 to 50MIPS

ISS SILS C

Type 3 (ISS)

Company D

ISS

30MIPS

ISS SILS D

Table 1 Results of SILS Benchmark Comparison

In
je
ct
io
n
si
gn
al

Fig.10 Inspection Results of ECU Connector Input and Output

Time counter for
the time without
pulse signal

Flag of power-on
process completion

Time counter for
after pulse input

SILS implementation
result

Timer counting the time
without pulse signal

Flag of power-on
process completion

Time counter for after pulse input 4.096 ms (0x0001)4.096 ms (0x0001)

4.096 ms (0x0001)4.096 ms (0x0001)

8.192 ms (0x0002)8.192 ms (0x0002)

8.192 ms (0x0002)8.192 ms (0x0002)

12.288 ms (0x0003)12.288 ms (0x0003)

12.288 ms (0x0003)12.288 ms (0x0003)
4.096 ms (0x0001)

4.096 ms (0x0001)

8.192 ms (0x0002)

8.192 ms (0x0002)

12.288 ms (0x0003)

12.288 ms (0x0003)

4.004 ms4.004 ms4.004 ms

4.096 ms (0x0001)4.096 ms (0x0001)

4.096 ms (0x0001)4.096 ms (0x0001)

8.192 ms (0x0002)8.192 ms (0x0002)

8.192 ms (0x0002)8.192 ms (0x0002)

12.288 ms (0x0003)12.288 ms (0x0003)

12.288 ms (0x0003)12.288 ms (0x0003)

4.004 ms4.004 ms

4.096 ms (0x0001)

4.096 ms (0x0001)

8.192 ms (0x0002)

8.192 ms (0x0002)

12.288 ms (0x0003)

12.288 ms (0x0003)

4.004 ms

HILS implementation
result

Fig.11 Results Comparison between SILS and HILS

Simulation Results of SILS Type 25

6. Remaining Challenges

This time, by adopting the ISS-less method for
VirtualCRAMAS, we developed the SILS so that inspec-
tion accuracy is almost the same as HILS and its opera-
tion speed is faster than HILS. Due to the higher speed,
it can be applied in the development for the vehicle con-
trol software without an actual vehicle by using HILS and
SILS, and it can streamline and improve the software
development process. However, in this development, we
realized the challenges and points to which we will need
to pay attention when we put it into full practical use in
the future.

6.1 Difference between Actual ECU and HILS
As mentioned earlier, we enabled the SILS Type 2 to

simulate at higher speed by using the virtual register and
the event-driven programming. However, this causes a
difference in behaviors and time concept between the
SILS Type 2 and a part of an actual ECU and / or HILS.
As a result, the inspection results of the SILS Type 2
were occasionally different from when an equivalent test
is conducted with HILS.
Therefore, when conducting an inspection with the

SILS Type 2 based on the same inspection items used for
an actual hardware or HILS, we need to note the items of
which inspection results differ in the SILS Type 2 and an
actual hardware / HILS. As a solution of this problem,
for example, we create a common inspection sheet for
SILS and HILS and specify inspection criteria of the
applicable items for each simulator on the sheet. Defining
the difference in advance leads to more efficient inspec-
tion because the same inspection can be conducted with
SILS and HILS.

6.2 Reduction in System Building Man-Hours
When building the SILS Type 2, at present, we design

and mount the HWM and the I/F board model in the vir-
tual microcomputer resource according to each specifica-
tion of the target microcomputer and peripheral circuits
of the ECU.
Therefore, it takes many man-hours to build the

whole system. We need to generate a hardware model
library and examine the way to use the models in the
library in combination according to specifications of a
microcomputer and a peripheral circuit.

7. Conclusion

We developed higher-speed SILS by adopting the
method using ISS-less technology for VirtualCRAMAS.
In the future, we need to make its simulation faster

for the accelerated test and solve problems to put it to
full practical use.
Lastly, we express our sincere appreciation to those

who provided cooperation and help to us to develop
VirtualCRAMAS.

11

FUJITSU TEN TECH. J. No.32(2009)

Application of ISS-less technology to VirtualCRAMAS (SILS)

Remaining Challenges6

Conclusion7

Profiles of Writers

Yuu MORIYAMA
Entered the company in 1998. Since
then, has engaged in the development
of the simulator (CRAMAS) used for
developing control systems. Currently,
in the CRAMAS Department, Control
System Development Division, AE
Group.

Akira KITAMURA
Entered the company in 2004. Since
then, has engaged in the development
of in-vehicle electronic devices and
development tools. Currently, in the
CRAMAS Department, Control
System Development Division, AE
Group.

Takeshi FUKAZAWA
Entered the company in 1980. Since
then, has engaged in the development
of in-vehicle electronic devices and
development tools. Currently, the
Department General Manager of the
CRAMAS Department, Control
System Development Division, AE
Group by way of sales engineering.

Masahiro MAEKAWA
Entered the company in 1990. Since
then, has engaged in the development of
in-vehicle electronic devices and devel-
opment tools. Currently, the Team
Leader of the CRAMAS Department,
Control System Development Division,
AE Group by way of vehicle control
software development.

