
15

In these days, automobile control systems are rapidly increasing in size and being complicated due to various market
needs concerning environmental regulations, advanced safety, information communication and other needs. Under this
circumstance, simulation technology is widely used for efficient development and designing of electronic control units for
automobile (hereinafter, referred to as ECU).

We at FUJITSU TEN also heavily use our original simulator "CRAMAS (Computer Aided Multi-Analysis System)" as
HILS (Hardware in the Loop Simulation).

While the HILS is used at a downstream step in ECU development process, the use of SILS (Software in the Loop
Simulation) that enables the evaluation of control software before the completion of ECU is now increasing. This paper
introduces our newly-developed framework "CRAMAS-VF" that enables creation, within a short period, of the environment
for SILS suitable for efficient and practical development of control software.

 Abstract

Koji FUKUOKA

Kyohei KIMOTO

Tatsunori OSAKI

Yuu MORIYAMA

Development of CRAMAS-VF

FUJITSU TEN TECH. J. NO.39(2013)

FUJITSU TEN TECHNICAL JOURNAL

16

1. Introduction

These days, automobile control systems are rapidly
increasing in size and becoming more complicated due to
various market needs concerning environmental regula-
tions, advanced safety, information communication and
other needs. On the other hand, the reduction of develop-
ment costs and the shortening of developing period are
also in demand. We at FUJITSU TEN widely use our
original simulator "CRAMAS (Computer Aided Multi-
Analysis System)" (Fig. 1) for efficient development and
designing of electronic control units for automobile (here-
inafter, referred to as ECU). CRAMAS is classified as a
simulator that provides closed loop simulation with the
use of HILS (Hardware In the Loop Simulation): hardware
currently being used widely.

The greatest advantage of CRAMAS is that it can
simulate, in real time, behavior of an engine and a vehicle
with the use of mathematized programs (hereinafter,
referred to as plant models). CRAMAS allows the devel-
opment and evaluation of an ECU even under the environ-
ment with no functional vehicle parts, just by using the
target ECU connected to CRAMAS. Because of such con-
tribution to efficient development, CRAMAS is used in
various fields including engine control, transmission con-
trol, hybrid power train control, integrity control, and
advanced safety relevant to millimeter wave radars.
CRAMAS also contributes to the shortening of evaluation
period because CRAMAS can carry out automated tests
(e.g. midnight unmanned driving), and surely carries out
test issues that are difficult to generate in reality, such as
a test involving danger in actual vehicle and fail-safe fail-
ure verification.

2. Expansion of Model-Based Development

In order to further shorten the development period,
model-based development has been adopted, wherein the
contents for control are expressed in a model for front-
loading from an algorithm development stage.

A model, called as executable specifications, is
described in a block diagram with physical equations and
others as shown in Fig. 2, not in a natural language (not in
Japanese sentence), which eliminates the problems exist-
ing generally in natural languages such as misunderstand-
ing and the ambiguity requiring reading between the
lines. In addition, by actually executing specifications, a
user can confirm the operational result, and thus can early
find the problem of the specifications, if any.

Fig. 3 shows the process for ECU development using a
model.

There are three types of simulation tools for promot-
ing model-based development: HILS has been used con-
ventionally; MILS (Model In the Loop Simulation) provides
simulation with the use of model expressing the control
logic being developed; and SILS (Software In the Loop
Simulation) provides simulation with the use of C code
automatically created based on the prepared model.

As shown in Fig. 3, to create MILS environment for
system planning and control specification examination in
upstream control development process, control logic must
be expressed in a model, not in C code. On the other
hand, the number of control functions in a larger and com-
plicated control system is huge, and further the control
functions have been conventionally expressed in C code.
Here, there is a problem that re-expressing entire control
in a model and its verification involve huge man-hours.

Fig.1 Appearance of CRAMAS

Fig.3 Process for development of control (V － shape process)

Fig.2 Example of model in model-based development

ECU development
process

Single body
inspection

Coding

Program
designing

Control
specification

Evaluation in
actual vehicle

Functional
evaluation

HILS
(Hardware In the Loop
Simulation)

Control
develoment process Control evaluation process

SILS
(Software In the Loop
Simulation)

C code

Upstream
System
planning

MILS
(Model In the Loop
Simulation)

Model

Introduction1

Expansion of Model-Based Development2

FUJITSU TEN TECH. J. NO.39(2013)

Development of CRAMAS-VF

17

Moreover, for the efficient and practical development of
the control logic, control software has to be evaluated as a
whole (application plus middleware for control).
Therefore, interrupt processing must be simulated at the
timing equivalent to microcomputer clock ([ns] order) so
as to be able to properly simulate the middleware. Here,
another problem is that this slows down the simulation
speed.

This paper introduces CRAMAS-VF, newly-developed
framework, which is free from these problems, and is
capable of creating the MILS/SILS environment suitable
for the model-based development.

3. Overview of CRAMAS-VF

Fig. 4 shows the whole structure of simulation envi-
ronment for MILS with "CRAMAS-VF."

CRAMAS-VF is operable on a computer with
Windows OS, and thus a user can create the whole envi-
ronment with CRAMAS-VF in one personal computer.
Table 1 shows CRAMAS-VF operating environment.

As shown in Fig. 4, CRAMAS-VF uses a modeling
tool, MATLAB®/Simulink® of MathWorks Inc., as a user
interface. A vehicle model and control software are con-
nected to Simulink to construct the simulation environ-
ment.

A user can easily assemble a whole model on Simulink
just by drawing lines between the functional blocks pro-
vided in a row. Thus, Simulink is a de facto standard
modeling tool for control development. In addition,
Simulink can also link with the modeling tools created by
other companies.

The connection between CRAMAS-VF and CRAMAS
GUI application (hereinafter, referred to as CRAMAS

application) allows the entry of the data concerning accel-
erator operation or other data into the simulator, the mon-
itoring of the simulator, and the analysis of measured data.
The same application used in HILS environment is used
on CRAMAS, which allows contents (measurement data
file, entry data file, etc.) to be made common. That is,
evaluation using the common contents is available both in
MILS/SILS environment and HILS environment.

The standard "ISO26262" for road vehicles was estab-
lished as an international standard concerning functional
safety for automotive electronic control functions, and
every manufacturer is making efforts to follow the stan-
dard. The standard requires, even in the case of model-
based development, the issues concerning the verification
of the consistency between the code built in a model
(specifications) and the code in a product (hereinafter,
referred to as Back-to-Back test). The use of the contents
common in MILS/SILS environment and HILS environ-
ment allows efficient implementation of the Back-to-Back
test.

4. Features of CRAMAS-VF

CRAMAS-VF provides the following features so as to
solve the problems in control development described in
Section 2 and to extend the simulation environment.
1) Use of existing control software (C code)
2) Function for simulation of interrupt-driven processing
3) Linkage with a measuring tool created by another

company

4.1 Use of Existing Control Software Asset (C Code)
CRAMAS-VF, as shown in Fig. 5, can perform simula-

tion while concurrently operating the new control model
to be developed and the existing control software in C
code.

The existing control software is available for control
other than the one to be developed. This allows the cre-
ation of development environment in a short time without
expressing the entire control software in a model. As
mentioned above, CRAMAS-VF allows the development
of new functions to be developed as a model. This solves
the problem in model-based development: "re-expressing

Fig.4 CRAMAS-VF block diagram

Windows
MATLAB/Simulink

Vehicle model
[Simulink]

CRAMAS-VF

Control software

Control
model

[Simulink]
New control

logic

Control
software
[C code]

Existing logic

Measuring
tool

[CRAMAS]

Vehicle model
[Modeling tools of
various companies]

OS

CPU
Memory
HDD

WindowsXP Professional SP3 32bit
Windows7 Professional SP1 32bit
Windows7 Professional SP1 64bit
Intel®Core™2 Duo 2.0GHz or more
2GB or more
5GB or more

Item Details

Table 1 CRAMAS-VF operation environment

Fig.5 Use of existing control software

MATLAB/Simulink

Vehicle model
[Simulink]

CRAMAS-VF

Control software

Control
model

[Simulink]

New control
logic

Control
software
[C code]

Existing
logic

Vehicle model
[Modeling tools of
various companies]

Overview of CRAMAS-VF3

Features of CRAMAS-VF4

FUJITSU TEN TECH. J. NO.39(2013)

FUJITSU TEN TECHNICAL JOURNAL

18

entire control in a model involves huge man-hours
because the number of control functions in a larger and
complicated control system is huge and the control func-
tions have been conventionally expressed in C code."
That is, this allows smooth transaction to the model-based
development.

Fig. 6 shows the configuration of CRAMAS-VF facili-
tating the use of existing control software.

A user calls CRAMAS-VF from one control ECU
block placed on Simulink, and then calls the whole exist-
ing control software as DLL (Dynamic Link Library). A
variety of control logic can be debugged by just replacing
the DLL of the whole existing control software separated
from the main model. The DLL is created with the use of
Visual Studio® that is the IDE (Integrated Development
Environment) that provides various functions for debug-
ging. Thus, it is easy to carry out debugging such as by
stopping the simulation of the DLL of the existing control
software at a certain C code and then executing the fol-
lowing codes step by step, using the functions for debug-
ging in Visual Studio®. The configuration allows the exist-
ing control software as is to be used, and moreover allows
the simulation combined with new control logic (model).

4.2 Function for Simulation of Interrupt-Driven
Processing

Fig. 7 shows the concrete configuration of interrupt-
driven processing by CRAMAS-VF running on Simulink.

CRAMAS-VF triggers interrupt-driven processing
functions so as to carry out the same processing as the
actual ECU. There is a method for executing simulation
at the timing equivalent to microcomputer clock, like
microcomputer emulation, so as to carry out control at
accurate timing. However, if the control software is oper-
ated on CRAMAS-VF at the timing equivalent to micro-
computer clock, simulation speed is reduced because the
plant model and control software are operated at common
time intervals. CRAMAS-VF creates and controls the list
of interrupt generation timings (hereinafter, referred to as
event list) to suppress the reduction of the simulation
speed. CRAMAS-VF also has the function for specifying
the timing for executing control software independently
from the timing for executing a plant model, by separat-
ing arithmetic operating cycles and control software clock
processing. (Refer to Fig. 8.)

Here is a concrete description of the flow of interrupt
processing based on Fig. 8. The example of the simula-
tion to be described is executed under the following
assumed conditions: use of the simulation arithmetic oper-
ation intervals of the plant model as the execution inter-
vals of entry AD conversion processing (in this case, 4
[ms]); and use of the processing intervals of control soft-
ware as the sampling time of the minimum interrupt
intervals (in this case, 125[ns]).

The first step is to calculate, based on the engine
speed and the crank angle at the current time (here,
0[ms]), the time of occurrence (1.280[ms]) of the synchroni-
zation interruption (hereinafter, referred to as 10degCA
crank angle synchronization interruption) corresponding
to the pulse (pulse signal every 10 degree) output by a
crank angle sensor at the time (at 1.024[ms]) when the
next 1ms period processing of the control software is exe-
cuted. The next is to register, in CRAMAS-VF event list,
the name of the interrupt function and the interrupt time,
and the name of the next 1ms period processing function

Fig.6 Block diagram showing linkage with existing software

Fig.8 Event-driven function

Fig.7 Configuration showing interrupt-driven processing

MATLAB/Simulink

Control ECU block

CRAMAS-VF

[DLL]
Control software

Existing C code C

New control

logic

Plant modelact1

act2

act1

act2

[DLL]
Control software

[DLL]
Control softwareReplaceable

To be created by
use of Visual

MATLAB/Simulink

Control ECU block

CRAMAS-VF

Control ECU software

Interruption library

Event-driven function

Plant model

From
ECU

To plant

model

func_NE10

func_1msec

func_1msec

func_NE10

Function Interruption time [ms]

1.024

1.280

1.536

2.048

Calculation of interruption time

NE10CA

Interruption processing

1ms

Interruption processing

NE10CA

Interruption handler

1ms

Interruption handler

Start of
interruption

handler

Registration of name

of interruption

function and

calculated

NE [rpm]

Crank angle [degCA]
Simulation time [ms]

Value output
by control

ECU software

Start of
interruption

handler

MATLAB/Simulink

Control ECU block

CRAMAS-VF

Control ECU software
[DLL]

Existing C code

Interruption library

func_ne10
func_1msec

・・・

Event list

Interruption

Registration

Plant model
act1

act2

act1

act2

S-Function

CRAMAS application

FUJITSU TEN TECH. J. NO.39(2013)

Development of CRAMAS-VF

19

and its execution time. When the current time under sim-
ulation reaches the time registered at the top of the event
list (in this case, at 1.024[ms]), CRAMAS-VF executes the
1ms period processing of the control software. Then, the
next is to re-calculate the time for executing the next 1ms
period processing of the control software (2.048[ms]) and
then to register the time in the event list. In addition, the
10degCA crank angle synchronization interruption is also
executed. The calculation processing of the plant model is
transferred into MATLAB every simulation operation
period, and then carried out by the solver of Simulink.
The current time of the control software is advanced to
the time for the next interrupt processing so as to provide
efficient interrupt processing by skipping the period in
which any interruption of control software is not generat-
ed.

The functions described so far concurrently allow the
accurate execution of the interrupt processing and high-
speed simulation.

Each of the conventional simulators creates the simula-
tion environment by customizing a middleware part of the
control software. However, CRAMAS-VF can execute the
interruption processing function, which allows the use of
the middleware part as is of the control software. Thus,
CRAMAS-VF allows the middleware part to be debugged,
unlike the conventional simulators.

These installed functions provide the simulation of the
control software as a whole that executes operations in
the same order at the same timing as the actual ECU.
This solves the problem: "the interruption processing
equivalent to the actual ECU can not be evaluated
because the interrupt-driven processing in the MILS/SILS
environment can not be simulated."

4.3 Linkage with Measuring Tool Created by
Another Company

CRAMAS-VF can work with Panel3 (created by
Toyota Technical Development Corporation), which is the
GUI application for measurement evaluation having been
used for evaluation in actual vehicles and evaluation in
bench tests. [Product name: SMiL (Fig. 9)]

Due to the linkage between CRAMAS-VF and such
evaluation tool that is familiar to users, the work of users
can be more efficient and introduction of CRAMAS-VF
can be easier.

5. Conclusion

The CRAMAS-VF we developed this time is the
result of our tool development technology and our packag-
ing technology of control software for mass produced
ECU. CRAMAS-VF easily allows the creation of the
MILS/SILS environment enabling the verification equiva-
lent to actual ECU, which contributed to the promotion of
the model-based development for vehicle control.
However, there are various challenges that remain in the
introduction of model-based development as a control
development process, and also there are high expectations
and many requests concerning tools. We will make efforts
to level up the products in the MILS/SILS field based on
CRAMAS-VF as a core technology, while following the
evolution of computing technology, and will keep develop-
ing CRAMAS products including HILS so that they can
function as toolchain in various steps of the model-based
development.

6. Acknowledgment

Lastly, we would like to express our sincere gratitude
to TOYOTA Motor Corporation and the companies con-
cerned for cooperating in this development.

※CRAMAS is a registered trademark of FUJITSU TEN
Limited.

※The proper nouns of product names and the like indi-
cated in the paper are trademarks or registered trade-
marks of the respective companies.

Fig.9 Screen image linked with Panel3

Conclusion5

Acknowledgment6

FUJITSU TEN TECH. J. NO.39(2013)

FUJITSU TEN TECHNICAL JOURNAL

20

Reference
1) "Development of Next Generation SILS," written by

Yasutaka Fujiwara, Hisahiro Ito, Harunaga Uozumi, and
Koji Fukuoka, on pp.1～4，of Proceeding No.122-12, pub-
lished by Society of Automotive Engineers of Japan
(JSAE) in 2012

2) "Development of Next Generation SILS" written by Koji
Fukuoka on pp.2～3 of JSAE KANSAI BRANCH NEWS
No. 42, published by JSAE KANSAI BRANCH in 2013

 Profiles of Writers

Koji FUKUOKA
Quality Audit Dept.
AE Engineering Group.

Yuu MORIYAMA
Power Train Development Dept.
AE Engineering Group.

Kyohei KIMOTO
Quality Audit Dept.
AE Engineering Group.

Tatsunori OSAKI
Quality Audit Dept.
AE Engineering Group.

